User Tools

Site Tools


scf_for_excited_states

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
scf_for_excited_states [2012/11/03 18:28]
jelen
scf_for_excited_states [2012/11/15 09:24]
vlada
Line 1: Line 1:
 ====== Constrained DFT for excited states ====== ====== Constrained DFT for excited states ======
 Constrained DFT allows to perform self consistent single electron excitation from arbitrary occupied orbital to unoccupied orbital (see example 1). There is also possibility to use quenching or geometry optimization of system in an excited state (see example 2). Constrained DFT allows to perform self consistent single electron excitation from arbitrary occupied orbital to unoccupied orbital (see example 1). There is also possibility to use quenching or geometry optimization of system in an excited state (see example 2).
-Optionally, the cDFT might be used to estimate coulombic U parameter by removing or adding a single electron from arbitrary orbital (see example 3).  ​ 
  
 ====== Example 1  ====== ====== Example 1  ======
-Let's try to calculate ​SCF of excited state of formaldimine molecule CH2=NH. CH2=NH has 12 electron, ​it means that there are 6 occupied molecular orbitals. ​We will move one electron from Homo to Lumo and run the SCFeSCFe loop will be switched on by keywords ​iscfe = 1. See example of fireball.in file. +First, we show how to perform cDFT, i.e. SCF calculation ​of excited stateof formaldimine molecule CH2=NH. CH2=NH has in total 12 electron, ​from them  ​are double ​occupied molecular orbitals. ​Here we will run cDFT with a single excitation moving ​one electron from HOMO to LUMO stateThe cDFT calculation is initiated ​by keywords ​icdft = 1. See example of fireball.in file. 
 Here is input file with initial geometry {{:​scfe:​CNH3.bas|}}. Here is input file with initial geometry {{:​scfe:​CNH3.bas|}}.
 +{{:​scfe:​cnh3-w.png?​400x200}}
 +
  
 fireball.in fireball.in
Line 19: Line 20:
 iquench = 0 iquench = 0
 max_scf_iterations = 200 max_scf_iterations = 200
-iscfe = 1+icdft = 1
 &END &END
  
Line 32: Line 33:
 </​code>​ </​code>​
  
-To move electron from one orbital to another we need elh.inp ​ input file. The first line means how much electrons is in the system. The first position ​in the secend ​line is number of orbital where we want to create hole. The second position ​means how "​big" ​the hole is. In this case there is missing one electronin Homo orbital. The third line first position tells where is placed excited electron, the second position means how much electron you excite. ​  ​Fig.1 ​+To move electron from one orbital to another we need to create ​elh.inp input file in a directory. The first line means how many electrons is in the system. The first position ​of the second ​line means number of orbital where we want to create ​hole. The second position ​determines occupancy of the hole (between 0-1). In this case there is missing one electron in HOMO orbital. The third line first position tells where is placed excited electron, the second position means how much electron you excite. ​  ​Fig.1 ​
 <​code>​ <​code>​
 12           ! total number of electron 12           ! total number of electron
Line 65: Line 66:
 </​code>​ </​code>​
  
-====== Example 3 ====== +{{:​scfe:​anim.gif}}
-We can also calculate U function which is need to scissor operator calculations+
  
scf_for_excited_states.txt · Last modified: 2012/11/15 15:20 (external edit)