User Tools

Site Tools


probe_particle_model

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
probe_particle_model [2022/01/13 14:04]
krejcio [Inputs] - adjusting to the latest version of params.ini
probe_particle_model [2022/01/13 14:15] (current)
krejcio [Inputs] - adding more comments to params.ini
Line 87: Line 87:
 This files contains all important information about the scan and informations for creation of important forcefields. Here we show an example of it: This files contains all important information about the scan and informations for creation of important forcefields. Here we show an example of it:
   probeType ​      ​8 ​                              # atom type of ProbeParticle (to choose L-J potential ),e.g. 8 for CO, 54 for Xe  ​   probeType ​      ​8 ​                              # atom type of ProbeParticle (to choose L-J potential ),e.g. 8 for CO, 54 for Xe  ​
-  tip            '​dz2' ​                             # multipole of the PP {'​dz2'​ is the most popular now fo CO}, charge cloud is not tilting ​ # +  tip            '​dz2' ​                           For calculations with electrostatics only - multipole of the PP {'​dz2'​ is the most popular now fo CO}, charge cloud is not tilting ​ # 
-  sigma           ​0.71 ​                           # FWHM of the gaussian charge cloud {0.7 or 0.71 are standarts} ​ # +  sigma           ​0.71 ​                           # For calculations with electrostatics only - FWHM of the gaussian charge cloud {0.7 or 0.71 are standarts} ​ # 
-  charge ​        ​-0.05 ​                           # effective charge of probe particle [e] {for multipoles the real moment is q*sigma - dipole - or q*sigma**2 - quadrupole} {for CO '​dz2'​ we typically use -0.30 - -0.05} ​ #+  charge ​        ​-0.05 ​                           # For calculations with electrostatics only: if 0.00 then ElFF is not even read - effective charge of probe particle [e] {for multipoles the real moment is q*sigma - dipole - or q*sigma**2 - quadrupole} {for CO '​dz2'​ we typically use -0.30 - -0.05} ​ #
   stiffness ​      0.20 0.20 20.00                 # [N/m] harmonic spring potential (x,y,R) components, x,y is bending stiffness, R particle-tip bond-length stiffness, {for CO we typically use 0.24 0.24 20.00}   stiffness ​      0.20 0.20 20.00                 # [N/m] harmonic spring potential (x,y,R) components, x,y is bending stiffness, R particle-tip bond-length stiffness, {for CO we typically use 0.24 0.24 20.00}
   r0Probe ​        0.0 0.0  3.00                   # [Å] equilibirum position of probe particle (x,y,R) components, R is bond length {3.00 for CO mostly these days}, x,y introduce tip asymmetry   r0Probe ​        0.0 0.0  3.00                   # [Å] equilibirum position of probe particle (x,y,R) components, R is bond length {3.00 for CO mostly these days}, x,y introduce tip asymmetry
probe_particle_model.txt · Last modified: 2022/01/13 14:15 by krejcio