User Tools

Site Tools


probe_particle_model

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
probe_particle_model [2017/01/26 23:00]
krejcio
probe_particle_model [2022/01/13 14:04]
krejcio [Inputs] - adjusting to the latest version of params.ini
Line 79: Line 79:
  
 If an electrostatic Hartree potential is obtained from some DFT calculations,​ it can be read *.xsf or *.cube files. The electrostatic force field is created by running: If an electrostatic Hartree potential is obtained from some DFT calculations,​ it can be read *.xsf or *.cube files. The electrostatic force field is created by running:
-  python PATH_TO_YOUR_PROBE_PARTICLE_MODEL/​generateLJFF.py -i YOUR_INPUT_FILE+  python PATH_TO_YOUR_PROBE_PARTICLE_MODEL/​generateElFF.py -i YOUR_INPUT_FILE
  
 If default parameters are used, than you have monopole represented by an Gaussian cloud of charge with its FWHM of 0.7 Ǎ. The monopole can be changed to non-tilting dipoles or quadrupoles by adding flag: -t type, where type ∈ {s,​px,​py,​pz,​dx2,​dy2,​dz2,​dxy,​dxz,​dyz};​ s stands for monopole (default), p for dipoles, d for quadrupoles. The FWHM of the Gaussian cloud can be changed by adding flag: -s FWHM. If default parameters are used, than you have monopole represented by an Gaussian cloud of charge with its FWHM of 0.7 Ǎ. The monopole can be changed to non-tilting dipoles or quadrupoles by adding flag: -t type, where type ∈ {s,​px,​py,​pz,​dx2,​dy2,​dz2,​dxy,​dxz,​dyz};​ s stands for monopole (default), p for dipoles, d for quadrupoles. The FWHM of the Gaussian cloud can be changed by adding flag: -s FWHM.
Line 87: Line 87:
 This files contains all important information about the scan and informations for creation of important forcefields. Here we show an example of it: This files contains all important information about the scan and informations for creation of important forcefields. Here we show an example of it:
   probeType ​      ​8 ​                              # atom type of ProbeParticle (to choose L-J potential ),e.g. 8 for CO, 54 for Xe  ​   probeType ​      ​8 ​                              # atom type of ProbeParticle (to choose L-J potential ),e.g. 8 for CO, 54 for Xe  ​
-  charge ​         0.0                             ​# effective charge of probe particle [e] +  ​tip            '​dz2' ​                             # multipole of the PP {'​dz2'​ is the most popular now fo CO}, charge ​cloud is not tilting ​ # 
-  stiffness ​      0.20 0.20 20.00                 # [N/m] harmonic spring potential (x,y,R) components, x,y is bending ​stiffnes, R particle-tip bond-length ​stiffnes+  sigma           0.71                            # FWHM of the gaussian charge cloud {0.7 or 0.71 are standarts} ​ # 
-  r0Probe ​        0.0 0.0  ​4.00                   # [Å] equilibirum position of probe particle (x,y,R) components, R is bond length, x,y introduce tip asymmetry+  charge ​        ​-0.05 ​                           ​# effective charge of probe particle [e] {for multipoles the real moment is q*sigma - dipole - or q*sigma**2 - quadrupole} {for CO '​dz2'​ we typically use -0.30 - -0.05} ​ # 
 +  stiffness ​      0.20 0.20 20.00                 # [N/m] harmonic spring potential (x,y,R) components, x,y is bending ​stiffness, R particle-tip bond-length ​stiffness{for CO we typically use 0.24 0.24 20.00} 
 +  r0Probe ​        0.0 0.0  ​3.00                   # [Å] equilibirum position of probe particle (x,y,R) components, R is bond length ​{3.00 for CO mostly these days}, x,y introduce tip asymmetry
   PBC             ​True ​                           # Periodic boundary conditions ? [ True/False ]   PBC             ​True ​                           # Periodic boundary conditions ? [ True/False ]
   gridN           240 240 200                     # Grid division around each cell axis; Not necessary - if it is not here a 0.1 division is applied   gridN           240 240 200                     # Grid division around each cell axis; Not necessary - if it is not here a 0.1 division is applied
Line 102: Line 104:
 If you want to make a scan for different probe, you have to change the probeType in __params.ini__ and to recompute L-J forces. If you want to make a scan for different probe, you have to change the probeType in __params.ini__ and to recompute L-J forces.
  
-**The number of grid divisions in *.xsf files is enlarged by one in each direction. Therefore, gridN have to be numbers of cubicles in *.xsf file reduced by one.**+**The number of grid divisions in *.xsf files is enlarged by one in each direction. Therefore, gridN have to be numbers of cubicles in *.xsf file reduced by one, if geometry is read from *.xyz, but electrostatics from .xsf**
  
 ===== Simulating AFM ===== ===== Simulating AFM =====
probe_particle_model.txt · Last modified: 2022/01/13 14:15 by krejcio