User Tools

Site Tools


This is an old revision of the document!

Atomo_i, struc.inp

Once we have the “CHARGES” we can produce the “Atomo_i” files by the FIREBALL. “CHARGES” file has to be at the same directory when you are running the FIREBALL. To the “” we will write:

&OPTION part

‐ nstepf = 1
‐ ifixcharge = 1

&OUTPUT part

‐ iwrtatom = 1

Than you obtained “Atomo_i” files and the “struc.inp” file, which should be modified to work properly when you run the STM simulation. How to do that: The “struc.inp” file contains some information about the sample:

1 !number. of atoms in unit cell
1 !initial and final atom which is contributing to the tunneling current
12 ! number maximum of neighbours
!! you have to modify this upper part

0.000000 0.000000 0.000000 1 ! coordinates and type of each atom

!! Next part (up to the lattice vectors) must be added
4 !number of orbitals in each type of atom (in a row)
2 !number of shells of each atom type (in a row)
0 1 !l of each shell type atom=1 (each atom type in a row)
16 !nkprl: no. of k's in one row (nk=nkprl2), =0 read a samplek.kpts file
1 1 !index_cell1, index_cell2 (ncell = (2*index_cell1+1)*(2*index_cell1+1)

0.866025 , 0.5 , 0. !Horizontal lattice vector (x‐axis)
0.866025 , ‐0.5 , 0. !Horizontal lattice vector (y‐axis)
!! We have to delete the last row of Lattice vector

The fixing the “nkprl” value to 0 and using the fireball k-points (with the opposite to complete the Brouilloin) is strongly reccomended. The “index_cell1” and “index_cell2” are relative to the number of cells we need in each direction x and y to avoid the border problems. The product of them gives us number of repetition unit which influence is involved to the computation.

sample_hamiltonian.1259228110.txt.gz · Last modified: 2011/02/18 13:14 (external edit)