User Tools

Site Tools


constrain_dft

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
constrain_dft [2012/11/15 15:18]
vlada
constrain_dft [2012/11/15 15:56] (current)
Line 4: Line 4:
  
 ====== Example 1  ====== ====== Example 1  ======
-First, we show how to perform cDFT, i.e. SCF calculation of excited state, of formaldimine molecule CH2=NH. CH2=NH has in total 12 electron, from them  6 are double occupied molecular orbitals. Here we will run cDFT with a single excitation moving one electron from HOMO to LUMO state. The cDFT calculation is initiated by keywords ​icdft = 1. See example of fireball.in file. +First, we show how to perform cDFT, i.e. SCF calculation of excited state, of formaldimine molecule CH2=NH. CH2=NH has in total 12 electron, from them  6 are double occupied molecular orbitals. Here we will run cDFT with a single excitation moving one electron from HOMO to LUMO state. The cDFT calculation is initiated by keywords ​icDFT = 1. See example of fireball.in file. 
 Here is input file with initial geometry {{:​scfe:​CNH3.bas|}}. Here is input file with initial geometry {{:​scfe:​CNH3.bas|}}.
-{{:​scfe:​cnh3-w.png?​400x200}} 
  
 +{{:​scfe:​cnh3-w.png?​400x200}}
  
 fireball.in fireball.in
Line 21: Line 21:
 iquench = 0 iquench = 0
 max_scf_iterations = 200 max_scf_iterations = 200
-icdft = 1+icDFT = 1
 &END &END
  
Line 34: Line 34:
 </​code>​ </​code>​
  
-To move electron from one orbital to another we need to create ​elh.inp input file in a directory. The first line means how many electrons is in the system. The first position of the second ​line means number of orbital where we want to create a hole. The second ​position ​determines ​occupancy ​of the hole (between 0-1). In this case there is missing one electron in HOMO orbital. The third line first position tells where is placed ​excited electron, the second position means how much electron you excite. ​  Fig.+To move electron from one orbital to another we need to create ​cDFT.optional ​input file in a directory. The first line means number of orbital where we want to create a state hole. The second ​line determines ​number ​of orbital ehwrw we want to create excited electron state. In this case there is missing one electron in HOMO orbital. The third line means occupancy ​excited electron.
 <​code>​ <​code>​
-12           total number of electron +6       hole state to be formed 
-6 0.5        ​unocculied ​state  +7       excited electron ​state to be formed 
-0.5        ​occupied state +1.    ​occupancy of excited electron
 </​code>​ </​code>​
-Results of such calculation ​is on the fig[1]+Results of such calculation ​are on the fig[1] 
 + 
 +====== Example 2 ====== 
 +There is also possible to perform quenching of the excited state. The example is shown on the above mentioned system. CH2=N2 molecule can be found in two symetric conformations (Hydrogen bounded on N is in left or on the right side). Such transition is carried out by excitation of one electron from Homo to Lumo. Transition from one conformation to another pass through the conical intersection which is the local minimum of the excited state. In this example we will optimize geometry to the conical intersection. We only switch on keyword iquench = 1 and let them relax. Example of fireball in is below and elh.in file is the same as above: 
 +<​code>​ 
 +&​OPTION 
 +basisfile = CNH3.bas  
 +icluster = 1 
 +nstepf = 5000 
 +T_initial = 100.0 
 +T_final = 100.0 
 +sigmatol = 0.00000001 
 +dt = 0.5 
 +iquench = 1 
 +max_scf_iterations = 200 
 +iscfe = 1  
 +&END 
 + 
 +&​OUTPUT 
 +iwrteigen = 1 
 +iwrtxyz = 1 
 +&END 
 + 
 +&MESH 
 +&END 
 +</​code>​ 
 + 
 +{{:​scfe:​anim.gif}} 
constrain_dft.1352989105.txt.gz · Last modified: 2012/11/15 15:18 (external edit)