CONTROL OF MOLECULAR SPIN STATE BY NON-COVALENT INTERACTION

Nitrogen doping of graphene significantly affects its chemical properties, which is particularly important in molecular sensing and electrocatalysis applications. However, detailed insight into interaction between N-dopant and molecules at the atomic scale is currently lacking. Here we demonstrate control over the spin state of a single iron(II) phthalocyanine molecule by its positioning on N-doped graphene. The spin transition was driven by weak intermixing between orbitals with z-component of N-dopant (pz of N-dopant) and molecule (dxzdyzdz2) with subsequent reordering of the Fe d-orbitals. The transition was accompanied by an electron density redistribution within the molecule, sensed by atomic force microscopy with CO-functionalized tip. This demonstrates the unique capability of the high-resolution imaging technique to discriminate between different spin states of single molecules. Moreover, we present a method for triggering spin state transitions and tuning the electronic properties of molecules through weak non-covalent interaction with suitably functionalized graphene.

 

B. de la Torre, M. Švec, P. Hapala, J. Redondo, O. Krejčí, R. Lo, D. Manna, A. Sarmah, D. Nachtigallová, J. Tuček, P. Błoński, M. Otyepka, R. Zbořil, P. Hobza, P. Jelínek  
Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene 
Nat. Commun. 9 (2018) 2831(1) - 2831(9).

 

The manuscript was highlighted in Nature Research Chemistry Community blog: Click here.